Respuesta :

Answer:

C. 2916

Step-by-step explanation:

The given limits is

[tex]\lim_{h \to 0} \frac{f(9+h)-f(9)}{h}[/tex]

if [tex]f(x)=x^4[/tex].

[tex]\Rightarrow f(9)=9^4=6561[/tex]

[tex]f(h+9)=(h+9)^4=h^4+36 h^3+486 h^2+2916 h+6561[/tex]

Our limit becomes;

[tex]\lim_{h \to 0} \frac{f(h+9)-f(9)}{h}= \lim_{h \to 0} \frac{h^4+36 h^3+486 h^2+2916 h+6561-6561}{h}[/tex]

This simplifies to;

[tex]\lim_{h \to 0} \frac{f(h+9)-f(9)}{h}= \lim_{h \to 0} \frac{h^4+36 h^3+486 h^2+2916 h}{h}[/tex]

[tex]\lim_{h \to 0} \frac{f(h+9)-f(9)}{h}= \lim_{h \to 0} h^3+36 h^2+486 h+2916 [/tex]

[tex]\lim_{h \to 0} \frac{f(h+9)-f(9)}{h}= (0)^3+36 (0)^2+486(0)+2916 [/tex]

[tex]\lim_{h \to 0} \frac{f(h+9)-f(9)}{h}= 2916 [/tex]

the correct choice is C.