Respuesta :

Answer: OPTION C

Step-by-step explanation:

By definition you know that:

[tex]\sqrt[n]{a^n}=a[/tex]

and by the exponents properties you also know that:

[tex]a^n*a^m=a^{(n+m)}[/tex]

Now, descompose 18 into its prime factors:

18=2*3*3=2*3²

Rewrite the expression and simplify (Keep on mind that: [tex]\sqrt{x^4}=x^{(\frac{4}{2})}=x^{2}[/tex]). Then, you obtain:

[tex]\sqrt{2*3^2*x^4*y*y^2}=3x^2y\sqrt{2y}[/tex]

Answer:

C. [tex]3x^2y\sqrt{2y}[/tex].

Step-by-step explanation:

The given radical expression is  [tex]\sqrt{18x^4y^3}[/tex].

We can rewrite this radical expression to obtain;

[tex]\sqrt{2\times9 \times (x^2)^2\times y^2\times y}[/tex].

This will give us;

[tex]\sqrt{2y} \times \sqrt{9(x^2)^2 y^2}[/tex].

[tex]3x^2y\sqrt{2y}[/tex].

The correct choice is C