Respuesta :

Answer:

option B

[tex]\frac{31}{50}-\frac{4}{25} i[/tex]

Step-by-step explanation:

Given in the question a complex fraction

Step1

To divide complex numbers, you must multiply by the conjugate. To find the conjugate of a complex number all you have to do is change the sign between the two terms in the denominator.

[tex]\frac{5+4i}{6+8i}(\frac{6-8i}{6-8i})[/tex]

Step2

Distribute (or FOIL) in both the numerator and denominator to remove the parenthesis.

[tex]\frac{30+24i-40i-32i²}{36-64i^{2} }[/tex]

Step3

Simplify the powers of i, specifically remember that i² = –1.

[tex]\frac{62-16i}{36+64}[/tex]

Step4

[tex]\frac{62}{100}-\frac{16i}{100}[/tex]

Step5

simply

[tex]\frac{31}{50}-\frac{4}{25}i[/tex]