If m^2-5/2m=-11/2,m=
Plz answer fast!!!

Answer: [tex]m=\frac{5}{4}\±\frac{3}{4}i\sqrt{7}[/tex]
Step-by-step explanation:
Use the Quadratic formula:
[tex]m=\frac{-b\±\sqrt{b^2}-4ac}{2a}[/tex]
Given the quadratic equation [tex]m^2-\frac{5}{2}m=-\frac{11}{2}[/tex]
Make it equal to zero:
[tex]m^2-\frac{5}{2}m+\frac{11}{2}=0[/tex]
You can see that :
[tex]a=1\\b=-\frac{5}{2}\\\\c=\frac{11}{2}[/tex]
Substitute values:
[tex]m=\frac{-(-\frac{5}{2})\±\sqrt{(-\frac{5}{2})^2-4(1)(\frac{11}{2})}}{2*1}\\\\m=\frac{\frac{5}{2}\±\sqrt{-\frac{63}{4}}}{2}\\\\m=\frac{\frac{5}{2}\±\frac{3}{2}i\sqrt{7}}{2}\\\\m=\frac{5}{4}\±\frac{3}{4}i\sqrt{7}[/tex]
(Remember that [tex]\sqrt{-1}=i[/tex])
Answer:
[tex] m = \frac { 5 } { 4 } \pm\frac { 3 } { 4 } i \sqrt { 7 } [/tex]
Step-by-step explanation:
We are given the following equation and we are to solve it for m:
[tex] m ^ 2 - \frac { 5 } { 2 } m = - \frac { 1 1 } { 2 } [/tex]
We will solve this using the quadratic formula [tex]\frac{-b\±\sqrt{b^2-4ac}}{2a}[/tex].
Rearranging the equation to get:
[tex]m^2-\frac{5}{2}m+\frac{11}{2}=0[/tex]
Substituting the given values in the above formula to get:
[tex]m=\frac{-(-\frac{5}{2})\±\sqrt{(-\frac{5}{2})^2-4(1)(\frac{11}{2})}}{2\times1}\\\\m=\frac{\frac{5}{2}\±\sqrt{-\frac{63}{4}}}{2}[/tex]
We know that [tex]\sqrt{-1}=i[/tex].
[tex]m=\frac{\frac{5}{2}\±\frac{3}{2}i\sqrt{7}}{2}\\\\m=\frac{5}{4}\±\frac{3}{4}i\sqrt{7}[/tex]