Respuesta :
ANSWER
The graph shifts 5 units left and 3 units up.
EXPLANATION
The given functions are:
[tex]f(x) = \frac{1}{x - 4} + 3[/tex]
and
[tex]g(x) = \frac{1}{x + 1} + 6[/tex]
We want to transform f(x) so that, it coincide with the g(x).
The required transformation is
[tex]f(x+5)+3[/tex]
Let us see why this works.
[tex]f(x+5)+3 = \frac{1}{x + 5- 4} + 3 + 3[/tex]
[tex]f(x+5)+3 = \frac{1}{x + 1} + 6 = g(x)[/tex]
The transformation f(x+5)+3 will shift f(x) 5 units left and 3 units up.
The third choice is correct.
Answer with step-by-step explanation:
We are given a function [tex]f(x) = \frac{1}{x - 4} + 3[/tex] which is to be transformed to another function [tex]g(x) = \frac{1}{x + 1} + 6[/tex].
We are to determine whether which statement describes the transformation of the graph of function f onto the graph of function g.
[tex]f(x+5)+3 = \frac{1}{x + 5- 4} + 3 + 3[/tex]
[tex]f(x+5)+3 = \frac{1}{x + 1} + 6[/tex]
[tex]f(x)=g(x)[/tex]
Therefore, the correct answer option is: The graph shifts 5 units right and 3 units up.