Which set of points contains the solutions to the equation y = –4⁄3x – 7⁄3?

A. {(3,–19), (2,3), (8,26)}
B. {(–3,–17), (4,11), (3,19)}
C. {(2,–5), (5,–9), (29,–41)}
D. {(–2,–18), (9,–61), (5,15)}

Respuesta :

Answer:

C. {(2,–5), (5,–9), (29,–41)}

Step-by-step explanation:

we have

[tex]y=-\frac{4}{3}x-\frac{7}{3}[/tex]

The slope of the given line is [tex]m=-\frac{4}{3}[/tex]

we know that

If a set of ordered pairs is a solution of the given line

then

the slope between two points of the set must be equal to [tex]m=-\frac{4}{3}[/tex]

The formula to calculate the slope between two points is equal to

[tex]m=\frac{y2-y1}{x2-x1}[/tex]

Verify each case

case A) {(3,–19), (2,3), (8,26)}

[tex]m=\frac{26-3}{8-2}[/tex]

[tex]m=\frac{23}{6}[/tex]

so

[tex]\frac{23}{6}\neq-\frac{4}{3}[/tex]

The set of case A) is not a solution of the given line

case B) {(–3,–17), (4,11), (3,19)}

[tex]m=\frac{19-11}{3-4}[/tex]

[tex]m=-8[/tex]

so

[tex]-8\neq-\frac{4}{3}[/tex]

The set of case B) is not a solution of the given line

case C) {(2,–5), (5,–9), (29,–41)}

[tex]m=\frac{-9+5}{5-2}[/tex]

[tex]m=-\frac{4}{3}[/tex]

so

[tex]-\frac{4}{3}=-\frac{4}{3}[/tex] ----> is true

Verify if the third point satisfy the equation of the given line

(29,–41)

[tex]-41=-\frac{4}{3}(29)-\frac{7}{3}[/tex]

[tex]-41*3=-123[/tex]

[tex]-123=-123[/tex] ------> is true

therefore

The set of case C) is a solution of the given line

case D)  {(–2,–18), (9,–61), (5,15)}

[tex]m=\frac{15+61}{5-9}[/tex]

[tex]m=-\frac{76}{4}[/tex]

[tex]m=-19[/tex]

so

[tex]-19\neq-\frac{4}{3}[/tex]

The set of case D) is not a solution of the given line