Respuesta :

ANSWER

[tex]y = 7 \sqrt{2} [/tex]

[tex]x = 7[/tex]

EXPLANATION

The given triangle has a right angle.

The side opposite to the 45° angle is 7 units.

To find angle x, we use the tangent ratio.

Recall the mnemonics TOA, which means,

[tex] \tan(45 \degree) = \frac{opposite}{adjacent} [/tex]

[tex] \tan(45 \degree) = \frac{7}{x} [/tex]

[tex]1 = \frac{7}{x} [/tex]

[tex]x = 7[/tex]

To find y, we use the sine ratio, which means

[tex] \sin(45 \degree) = \frac{opposite}{hypotenuse} [/tex]

[tex]\sin(45 \degree) = \frac{7}{y} [/tex]

[tex]y= \frac{7}{\sin(45 \degree) } [/tex]

[tex]y= \frac{7}{ \frac{1}{ \sqrt{2} } } [/tex]

[tex]y = 7 \times \frac{ \sqrt{2} }{1} [/tex]

[tex]y = 7 \sqrt{2} [/tex]

Answer:

see explanation

Step-by-step explanation:

Using the trig. ratios in the right triangle and

tan45° = 1, sin45° = [tex]\frac{1}{\sqrt{2} }[/tex], then

tan45° = [tex]\frac{opposite}{adjacent}[/tex] = [tex]\frac{7}{x}[/tex]

Multiply both sides by x

x × 1 = 7 ⇒ x = 7

---------------------------------------

sin45° = [tex]\frac{opposite}{hypotenuse}[/tex] = [tex]\frac{7}{y}[/tex]

Multiply both sides by y

y × sin45° = 7 ( divide both sides by sin 45° )

y = 7 / sin45° = 7 / 1/[tex]\sqrt{2}[/tex] = 7[tex]\sqrt{2}[/tex]