Pleas help me solve #1 :(
Your answer helps so much!!

ANSWER
[tex]y = 7 \sqrt{2} [/tex]
[tex]x = 7[/tex]
EXPLANATION
The given triangle has a right angle.
The side opposite to the 45° angle is 7 units.
To find angle x, we use the tangent ratio.
Recall the mnemonics TOA, which means,
[tex] \tan(45 \degree) = \frac{opposite}{adjacent} [/tex]
[tex] \tan(45 \degree) = \frac{7}{x} [/tex]
[tex]1 = \frac{7}{x} [/tex]
[tex]x = 7[/tex]
To find y, we use the sine ratio, which means
[tex] \sin(45 \degree) = \frac{opposite}{hypotenuse} [/tex]
[tex]\sin(45 \degree) = \frac{7}{y} [/tex]
[tex]y= \frac{7}{\sin(45 \degree) } [/tex]
[tex]y= \frac{7}{ \frac{1}{ \sqrt{2} } } [/tex]
[tex]y = 7 \times \frac{ \sqrt{2} }{1} [/tex]
[tex]y = 7 \sqrt{2} [/tex]
Answer:
see explanation
Step-by-step explanation:
Using the trig. ratios in the right triangle and
tan45° = 1, sin45° = [tex]\frac{1}{\sqrt{2} }[/tex], then
tan45° = [tex]\frac{opposite}{adjacent}[/tex] = [tex]\frac{7}{x}[/tex]
Multiply both sides by x
x × 1 = 7 ⇒ x = 7
---------------------------------------
sin45° = [tex]\frac{opposite}{hypotenuse}[/tex] = [tex]\frac{7}{y}[/tex]
Multiply both sides by y
y × sin45° = 7 ( divide both sides by sin 45° )
y = 7 / sin45° = 7 / 1/[tex]\sqrt{2}[/tex] = 7[tex]\sqrt{2}[/tex]