[tex]Y>X[/tex] for the following [tex](x,y)[/tex]:
(1, 2), (1, 3), (1, 6)
(2, 3), (2, 6)
(3, 6)
(4, 6)
(5, 6)
So we have
[tex]P(Y>X)=P(X=1,Y=2)+P(X=1,Y=3)+\cdots+P(X=5,Y=6)[/tex]
[tex]X,Y[/tex] are independent, so the joint probabilities are
[tex]P(X=x,Y=y)=P(X=x)\cdot P(Y=y)=\dfrac1{5y}[/tex]
Then
[tex]P(Y>X)=\dfrac1{10}+\dfrac2{15}+\dfrac5{30}=\dfrac25[/tex]