Respuesta :

Answer:

The expression that is not an identity is:

                Option: A        [tex]2\sin^2 x-\sin x=1[/tex]

Step-by-step explanation:

                             Option: A

[tex]2\sin^2 x-\sin x=1[/tex]

We may check this identity at a point.

when x=0 we have:

[tex]2\sin^2 0-\sin 0=1\\\\0-0=1\\\\0=1[/tex]

which is not possible.

Hence, identity A is incorrect.

                         Option: B

[tex]\sec x\csc x(\tan x+\cot x)=\sec^2x+\csc^2 x[/tex]

On taking the left hand side of the expression we have:

[tex]\sec x\csc x(\tan x+\cot x)=\dfrac{1}{\cos x}\cdot \dfrac{1}{\sin x}(\dfrac{\sin x}{\cos x}+\dfrac{\cos x}{\sin x})\\\\\\\sec x\csc x(\tan x+\cot x)=\dfrac{1}{\cos x\sin x}\cdot (\dfrac{\sin^2 x+\cos ^2x}{\sin x\cos x})\\\\\\\sec x\csc x(\tan x+\cot x)=\dfrac{\sin^2 x+\cos^2 x}{\sin^2 x\cos^2 x}\\\\\\\sec x\csc x(\tan x+\cot x)=\dfrac{\sin^2 x}{\sin^2 x\cos^2 x}+\dfrac{\cos^2 x}{\sin^2 x\cos^2 x}\\\\\\\sec x\csc x(\tan x+\cot x)=\dfrac{1}{\cos^2 x}+\dfrac{1}{\sin^2 x}[/tex]

[tex]\sec x\csc x(\tan x+\cot x)=\sec^2 x+\csc^2 x[/tex]

Hence, option: B is correct.

                                Option: C

We know that:

[tex]\cos 2x=1-2\sin^2 x[/tex]

and [tex]\cos 2x=2\cos^2 x-1[/tex]

Hence, we get:

[tex]1-2\sin^2 x=2\cos^2 x-1[/tex]

Hence, option: C is correct.

                                   Option: D

[tex]\sin^2 x+\tan^2 x+\cos^2 x=\sec^2 x[/tex]

On taking left hand side we get:

[tex]\sin^2 x+\tan^2 x+\cos^2 x=\sin^2 x+\cos^2 x+\tan^2 x\\\\\\\sin^2 x+\tan^2 x+\cos^2 x=1+\tan^2 x\\\\\\\sin^2 x+\tan^2 x+\cos^2 x=\sec^2 x[/tex]

Hence, option: D is correct.

Answer:

Option A.

Step-by-step explanation:

The first equation is

[tex]2\sin^2x-\sin x=1[/tex]

Taking LHS,

[tex]LHS=2\sin^2x-\sin x[/tex]

Substitute x=0 in the given equation.

[tex]LHS=2\sin^2(0)-\sin (0)[/tex]

[tex]LHS=0\neq 1[/tex]

[tex]LHS\neq RHS[/tex]

The equation [tex]2\sin^2x-\sin x=1[/tex] is not an identity, therefore the correct option is A.

The second equation is

[tex]\sec x\csc x(\tan x+\cot x)=\sec^2x+\csc^2x[/tex]

Taking LHS,

[tex]LHS=\sec x\csc x(\tan x+\cot x)[/tex]

[tex]LHS=\sec x\csc x\tan x+\sec x\csc x\cot x[/tex]

[tex]LHS=\frac{1}{\cos x}\cdot \frac{1}{\sin x}\cdot \frac{\sin x}{\cos x}+\frac{1}{\cos x}\cdot \frac{1}{\sin x} \cdot \frac{\cos x}{\sin x}[/tex]

[tex]LHS=\frac{1}{\cos^2 x}+\frac{1}{\sin^2 x}[/tex]

[tex]LHS=\sec^2 x\csc^2 x[/tex]

[tex]LHS=RHS[/tex]

The equation [tex]\sec x\csc x(\tan x+\cot x)=\sec^2x+\csc^2x[/tex] is an identity.

The third equation is

[tex]2\cos^2x-1=1-2\sin^2x[/tex]

We know that

[tex]\cos 2x=2\cos^2 x-1[/tex]

[tex]\cos 2x=1-2\sin^2 x[/tex]

Equating these two equation we get

[tex]2\cos^2x-1=1-2\sin^2x[/tex]

The equation [tex]2\cos^2x-1=1-2\sin^2x[/tex] is an identity.

The fourth equation is

[tex]\sin^2x+\tan^2x+\cos^2x=\sec^2x[/tex]

Taking LHS,

[tex]LHS=\sin^2x+\tan^2x+\cos^2x[/tex]

[tex]LHS=(\sin^2x+\cos^2x)+\tan^2x[/tex]

[tex]LHS=1+\tan^2x[/tex]                  [tex][\because \sin^2x+\cos^2x=1][/tex]

[tex]LHS=\sec^2x[/tex]                  [tex][\because 1+\tan^2x=\sec^2x][/tex]

[tex]LHS=RHS[/tex]

The equation [tex]\sin^2x+\tan^2x+\cos^2x=\sec^2x[/tex] is an identity.