Respuesta :
Answer:
[tex]\large\boxed{\left(x^{27}y\right)^\frac{1}{3}=x^9y^\frac{1}{3}=x^9\sqrt[3]{y}}[/tex]
Step-by-step explanation:
[tex]\left(x^{27}y\right)^\frac{1}{3}\qquad\text{use}\ (ab)^n=a^nb^n\ \text{and}\ (a^n)^m=a^{nm}\\\\\left(x^{27}\right)^\frac{1}{3}y^\frac{1}{3}=x^{(27)\left(\frac{1}{3}\right)}y^\frac{1}{3}=x^9y^\frac{1}{3}\\\\\text{use}\ a^\frac{1}{n}=\sqrt[n]{a}\\\\=x^9\sqrt[3]{y}[/tex]
Answer:
The equivalent form of the given expression is [tex]x^{9}\times\sqrt[3]{y}[/tex]
Step-by-step explanation:
Given : Expression [tex](x^{27}y)^\frac{1}{3}[/tex]
To find : The expression is equivalent to?
Solution :
Step 1 - Write the expression
[tex](x^{27}y)^\frac{1}{3}[/tex]
Step 2 - Separating the power using [tex](xy)^a=x^a\times y^a[/tex]
[tex]=(x^{27})^{\frac{1}{3}}\times y^{\frac{1}{3}}[/tex]
Step 3 - Solving the power, [tex](x^a)^b=x^{a\times b}[/tex]
[tex]=x^{27\times\frac{1}{3}}\times y^{\frac{1}{3}}[/tex]
Step 4 - Simplifying
[tex]=x^{9}\times\sqrt[3]{y}[/tex]
So, The equivalent form of the given expression is [tex]x^{9}\times\sqrt[3]{y}[/tex]