find an equation for the line below

Answer:
[tex]y=\frac{1}{2}x+\frac{1}{2}[/tex]
Step-by-step explanation:
The 2 points in red are (5, 3) & (-5, -2). These are (x_1,y_1) & (x_2,y_2), respectively.
The equation of a line given two points are given by the formula [tex]y-y_1=\frac{y_2-y_1}{x_2-x_1}(x-x_1)[/tex]
We simply plug in x_1, y_1, x_2, y_2 into the formula and find the equation of the line:
[tex]y-y_1=\frac{y_2-y_1}{x_2-x_1}(x-x_1)\\y-3=\frac{-2-3}{-5-5}(x-5)\\y-3=\frac{-5}{-10}(x-5)\\y-3=\frac{1}{2}(x-5)\\y-3=\frac{1}{2}x-\frac{5}{2}\\y=\frac{1}{2}x-\frac{5}{2}+3\\y=\frac{1}{2}x+\frac{1}{2}\\[/tex]
Answer:
x-2y=-1
Step-by-step explanation:
The given given line passes through;
[tex](-5,-2)[/tex] and [tex](5,3)[/tex]
The slope of the line is given by;
[tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex]
We plug in the values to get;
[tex]m=\frac{3--2}{5--5}=\frac{1}{2}[/tex]
The equation is given by
[tex]y-y_1=m(x-x_1)[/tex]
[tex]y--2=\frac{1}{2}(x--5)[/tex]
[tex]2(y+2)=x+5[/tex]
2y+4=x+5
The eqation is x-2y=-1