Respuesta :

Answer:

The quadratic equation has two complex solutions

Step-by-step explanation:

we know that

The formula to solve a quadratic equation of the form [tex]ax^{2} +bx+c=0[/tex] is equal to

[tex]x=\frac{-b(+/-)\sqrt{b^{2}-4ac}} {2a}[/tex]

in this problem we have

[tex]x^{2}=4x-5[/tex]  

Equate to cero

[tex]x^{2}-4x+5=0[/tex]  

so

[tex]a=1\\b=-4\\c=5[/tex]

substitute in the formula

[tex]x=\frac{4(+/-)\sqrt{-4^{2}-4(1)(5)}} {2(1)}[/tex]

[tex]x=\frac{4(+/-)\sqrt{16-20}} {2}[/tex]

[tex]x=\frac{4(+/-)\sqrt{-4}} {2}[/tex]

Remember that

[tex]i^{2}=-1[/tex]

so

[tex]x=\frac{4(+/-)2i} {2}[/tex]

[tex]x=2(+/-)i[/tex]

therefore

The quadratic equation has two complex solutions