Respuesta :
Answer:
[tex]\boxed{\bold{z=\frac{2}{3},\:z=-\frac{9}{10}}}[/tex]
Step By Step Explanation:
Add 7z To Both Sides
[tex]\bold{30z^2+7z=18-7z+7z}[/tex]
Simplify
[tex]\bold{30z^2+7z=18}[/tex]
Subtract 18 From Both Sides
[tex]\bold{30z^2+7z-18=18-18}[/tex]
Simplify
[tex]\bold{30z^2+7z-18=0}[/tex]
- Solve With Quadratic Formula
- Eg: For The Quadratic Equation Of The Form [tex]\bold{ax^2+bx+c=0}[/tex] The Solutions Are [tex]\bold{x_{1,\:2}=\frac{-b\pm \sqrt{b^2-4ac}}{2a}}[/tex]
- For [tex]\bold{a=30,\:b=7,\:c=-18:\quad z_{1,\:2}=\frac{-7\pm \sqrt{7^2-4\cdot \:30\left(-18\right)}}{2\cdot \:30}}[/tex]
[tex]\bold{\frac{-7+\sqrt{7^2-4\cdot \:30\left(-18\right)}}{2\cdot \:30}: \ \frac{2}{3} }[/tex]
[tex]\bold{\frac{-7-\sqrt{7^2-4\cdot \:30\left(-18\right)}}{2\cdot \:30}: \ -\frac{9}{10} }[/tex]
Solutions:
[tex]\bold{z=\frac{2}{3},\:z=-\frac{9}{10}}[/tex]
- M
Answer:
[tex]z=-\frac{9}{10}[/tex] or [tex]z=\frac{2}{3}[/tex]
Step-by-step explanation:
We want to solve;
[tex]30z^2=18-7z[/tex]
We rewrite in the form;
[tex]az^2+bz+c=0[/tex]
[tex]30z^2+7z-18=0[/tex]
where a=30,b=7 and c=-18
The solution is given by;
[tex]z=\frac{-b\pm \sqrt{b^2-4ac} }{2a}[/tex]
Substitute to obtain;
[tex]z=\frac{-7\pm \sqrt{7^2-4(30)(-18)} }{2(30)}[/tex]
[tex]z=\frac{-7\pm \sqrt{2209} }{2(30)}[/tex]
[tex]z=\frac{-7\pm 47 }{60}[/tex]
[tex]z=-\frac{9}{10}[/tex] or [tex]z=\frac{2}{3}[/tex]