HELPPPPPPPPP i have the most trouble with math what’s the answer??

Answer:
Last Option
[tex]\sqrt{13} -\sqrt{11}[/tex]
Step-by-step explanation:
To simplify the expression you must multiply the numerator and the denominator of the fraction by the conjugate of the denominator.
If you have an expression of the form
[tex]a +b[/tex] then its conjugate will be [tex]a - b.[/tex]
The result of that multiplication will be
[tex]a ^ 2 -b ^ 2[/tex]
Therefore we have the expression
[tex]\frac{2}{\sqrt{13} +\sqrt{11}}[/tex]
By multiplying by the conjugate of the denominator we have
[tex]\frac{2}{\sqrt{13} +\sqrt{11}}*\frac{\sqrt{13} -\sqrt{11}}{\sqrt{13} -\sqrt{11}}\\\\\\\frac{2(\sqrt{13} -\sqrt{11})}{(\sqrt{13})^2 -(\sqrt{11})^2}\\\\\\\frac{2\sqrt{13} -2\sqrt{11}}{13 -11}\\\\\\\frac{2\sqrt{13} -2\sqrt{11}}{2}[/tex]
[tex]=\sqrt{13} -\sqrt{11}[/tex]
Answer:
[tex]\sqrt{13}-\sqrt{11}[/tex]
Step-by-step explanation:
When we have an expression in this form:
[tex]\frac{a}{\sqrt{x}+\sqrt{y} }[/tex]
We need to multiply it by [tex]\frac{\sqrt{x}-\sqrt{y} }{\sqrt{x}-\sqrt{y}}[/tex]
Let's do this:
[tex]\frac{2}{\sqrt{13}+\sqrt{11} }*\frac{\sqrt{13}-\sqrt{11}}{\sqrt{13}-\sqrt{11}}\\=\frac{2(\sqrt{13}-\sqrt{11})}{(\sqrt{13}+\sqrt{11})(\sqrt{13}-\sqrt{11})}\\=\frac{2\sqrt{13} -2\sqrt{11} }{(\sqrt{13} )^2-(\sqrt{11} )^2}\\=\frac{2\sqrt{13} -2\sqrt{11} }{13-11}\\=\frac{2\sqrt{13} -2\sqrt{11} }{2}\\=\frac{2(\sqrt{13} -\sqrt{11} )}{2}\\=\sqrt{13}-\sqrt{11}[/tex]
Note: we used the property [tex]\sqrt{a} \sqrt{a} =a[/tex]