Respuesta :
Parameterize the path by
[tex]\vec r(t)=(2\cos t,2\sin t)[/tex]
with [tex]-\dfrac\pi2\le t\le\dfrac\pi2[/tex]. Then the integral is
[tex]\displaystyle\int_Cxy^2\,\mathrm ds=\int_0^18\cos t\sin^2t\sqrt4\,\mathrm dt[/tex]
[tex]=\displaystyle16\int_0^1\cos t\sin^2t\,\mathrm dt=\boxed{\frac{32}3}[/tex]
The correct answer is [tex]C=\frac{32}{3}[/tex] as the Curve of the circle.
From the question we are told that:
Curve [tex]C =xy^2 ds[/tex]
Right half of the circle [tex]x^2 + y^2 = 4[/tex]
Since
Right half of the circle counterclockwise Incorrect:
Therefore
[tex]x=2cost[/tex]
[tex]y=2sint[/tex]
Giving that
[tex]ds=\sqrt{x^2(+1)^2+(y^2){+1}^2}dt[/tex]
[tex]ds=\sqrt{2^2(sin^2t+cos^2t}dt[/tex]
[tex]d_s=2dt[/tex]
Generally the curve
[tex]C=\int xy^2ds[/tex]
[tex]C=\int (2cost)(2sint)^2dt[/tex]
[tex]C=\frac{32}{3}[/tex]
In conclusion wit the Right half of the circle as [tex]x^2 + y^2 = 4[/tex] it is deduced that the Curve counterclockwise is [tex]C=\frac{32}{3}[/tex]
For more explanation on this visit
https://brainly.com/question/4698987?referrer=searchResults