Respuesta :

ANSWER

[tex]{2}^{ \frac{1}{6} } [/tex]

EXPLANATION

We want to find the expression that is equivalent to,

[tex] \frac{ \sqrt{2} }{ \sqrt[3]{2} } [/tex]

This is the same as:

[tex] \frac{ {2}^{ \frac{1}{2} } }{ {2}^{ \frac{1}{3} } } [/tex]

Use the following property of indices

[tex] \frac{ {a}^{m} }{ {a}^{n} } = {a}^{m - n} [/tex]

This implies that,

[tex] \frac{ {2}^{ \frac{1}{2} } }{ {2}^{ \frac{1}{3} } } = {2}^{ \frac{1}{2} - \frac{1}{3} } [/tex]

Simplify to obtain,

[tex] {2}^{ \frac{3 - 2}{6} } = {2}^{ \frac{1}{6} } [/tex]

Answer:

6√2

Step-by-step explanation:

Just did it