Respuesta :

Answer:

Part 1)

a) The graph in the attached figure

b) The domain of f(x) is the interval  [-4,1] and the range is the interval [0,2]

c) [tex]f(1)=0[/tex], [tex]f(-4)=2[/tex] , [tex]f(-1)=0[/tex]

Part 2)

a) The graph in the attached figure

b) The domain of g(x) is the interval  [-3,9] and the range of g(x) is the interval   [1,13)

c) [tex]g(0)=1[/tex], [tex]g(5)=3.5[/tex] , [tex]g(9)=1[/tex]

Step-by-step explanation:

Part 1) we have

[tex]f(x)=-\frac{2}{3}x-\frac{2}{3}[/tex] -----> For [tex]-4\leq x<-1[/tex]

[tex]f(x)=1-x^{2}[/tex] -----> For [tex]-1\leq x\leq 1[/tex]

[tex]f(x)=1[/tex] -----> For [tex]1 < x\leq 4[/tex]

Part a) Graph the function

Using a graphing tool

Graph each function at the indicated intervals

see the attached figure

Part b) The domain of f(x) is the interval  [-4,1]

All real numbers less than or equal to 1 and greater than or equal to -4

The range of f(x) is the interval [0,2]

All real numbers less than or equal to 2 and greater than or equal to 0

Part c) Determine

a1) f(1)

we know that

For x=1

[tex]f(x)=1-x^{2}[/tex]

substitute

[tex]f(1)=1-(1)^{2}=0[/tex]

a2) g(5)

we know that

For x=5

[tex]f(x)=-\frac{2}{3}x-\frac{2}{3}[/tex]

substitute

[tex]f(-4)=-\frac{2}{3}x-\frac{2}{3}=2[/tex]

a3) f(-1)

For x=-1

[tex]f(x)=1-x^{2}[/tex]

substitute

[tex]f(-1)=1-x^{2}=0[/tex]

Part 2) we have

[tex]g(x)=-(x+3)^{2}+4[/tex] -----> For [tex]3\leq x<0[/tex]

[tex]g(x)=(x+2)/2[/tex] -----> For [tex]0\leq x < 6[/tex]  

[tex]g(x)=4/(x-5)[/tex] -----> For [tex]6 \leq x\leq 9[/tex]                              

Part a) Graph the function

Using a graphing tool

Graph each function at the indicated intervals

see the attached figure

Part b) The domain of g(x) is the interval  [-3,9]

All real numbers less than or equal to 9 and greater than or equal to -3

The range of f(x) is the interval [1,13)

All real numbers less than 13 and greater than or equal to 1

Part c) Determine

a1) g(0)

we know that      

For x=0

[tex]g(x)=(x+2)/2[/tex]      

substitute

[tex]g(0)=(0+2)/2=1[/tex]  

a2) g(5)

we know that

For x=5

[tex]g(x)=(x+2)/2[/tex]  

substitute

[tex]g(5)=(5+2)/2=3.5[/tex]  

a3) g(9)

For x=9

[tex]g(x)=4/(x-5)[/tex]

substitute

[tex]g(9)=4/(9-5)=1[/tex]

Ver imagen calculista
Ver imagen calculista