Respuesta :

Answer:

Option A is correct (17,11).

Step-by-step explanation:

6x - 9y = 3

3x - 4y =7

it can be represented in matrix form as[tex]\left[\begin{array}{cc}6&-9\\3&4\end{array}\right] \left[\begin{array}{c}x\\y\end{array}\right] = \left[\begin{array}{c}3\\7\end{array}\right][/tex]

A= [tex]\left[\begin{array}{cc}6&-9\\3&4\end{array}\right] [/tex]

X= [tex]\left[\begin{array}{c}x\\y\end{array}\right][/tex]

B= [tex] \left[\begin{array}{c}3\\7\end{array}\right][/tex]

i.e, AX=B

or X= A⁻¹ B

A⁻¹ = 1/|A| * Adj A

determinant of A = |A|= (6*-4) - (-9*3)

                                    = (-24)-(-27)

                                    = (-24) + 27 = 3

so, |A| = 3

Adj A=  [tex]\left[\begin{array}{cc}-4&9\\-3&6\end{array}\right] [/tex]

A⁻¹ =  [tex]\left[\begin{array}{cc}-4&9\\-3&6\end{array}\right] [/tex]/3

A⁻¹ =  [tex]\left[\begin{array}{cc}-4/3&3\\-1&2\end{array}\right] [/tex]

X= A⁻¹ B

X=  [tex]\left[\begin{array}{cc}-4/3&3\\-1&2\end{array}\right] *\left[\begin{array}{c}3\\7\end{array}\right][/tex]

X= [tex]\left[\begin{array}{c}(-4/3*3) + (3*7)\\(-1*3) + (2*7)\end{array}\right][/tex]

X= [tex]\left[\begin{array}{c}-4+21\\-3+14\end{array}\right][/tex]

X= [tex]\left[\begin{array}{c}17\\11\end{array}\right][/tex]

x= 17, y= 11

solution set= (17,11).

Answer:

a. (17,11)

Step-by-step explanation:

The given system is ;

[tex]6x-9y=3[/tex]

[tex]3x-4y=7[/tex]

The augmented matrices is

[tex]\left[\begin{array}{ccc}6&-9&|3\\3&-4&|7\end{array}\right][/tex]

Divide Row 1 by 6

[tex]\left[\begin{array}{ccc}1&-\frac{3}{2}&|\frac{1}{2}\\3&-4&|7\end{array}\right][/tex]

Subtract 3 times Row 1 from Row 2

[tex]\left[\begin{array}{ccc}1&-\frac{3}{2}&|\frac{1}{2}\\0&\frac{1}{2}&|\frac{11}{2}\end{array}\right][/tex]

Divide Row 2 by [tex]\frac{1}{2}[/tex]

[tex]\left[\begin{array}{ccc}1&-\frac{3}{2}&|\frac{1}{2}\\0&1}&|11\end{array}\right][/tex]

Add [tex]\frac{3}{2}[/tex] times Row 2 to Row 1

[tex]\left[\begin{array}{ccc}1&0&|17\\0&1}&|11\end{array}\right][/tex]

Hence the solution is (17,11)