Trigonometric Identity help

Answer:
sin[tex]\pi[/tex]/4 * sin[tex]\pi[/tex]/6 = 1/2 *(cos [tex]\pi[/tex]/12 - cos 5[tex]\pi[/tex]/12)
Step-by-step explanation:
Formula:- sinX sinY = (1/2) [ cos (X - Y) - cos (X + Y) ]
sin(π/4)sin(π/6)
= (1/2)[cos(π/4 - π/6) - cos(π/4 + π/6)]
= (1/2)[cos(3π/12 - 2π/12) - cos(3π/12 + 2π/12)]
= (1/2)[cos(π/12) - cos(5π/12)]