please help ASAP.. Question below

Answer:
option B and option D
0 and 2
Step-by-step explanation:
Given in the question two functions
f(x) = x² - 4x + 3
g(x) = -x² + 3
f(x) = g(x)
x² - 4x + 3 = - x² + 3
Rearrange the like terms, x terms to the left and constant term to the right.
x²+ x² - 4x = 3 - 3
2x² - 4x = 0
Divide by two
2x²/2 - 4x/2 = 0/2
x² - 2x = 0
Take x as a common term
x(x-2) = 0
so
x = 0
or
(x-2) = 0
x = 2
Answer:
0
3
Step-by-step explanation:
The given functions are
[tex]f(x)=x^2-4x+3[/tex]
We can rewrite this function in the vertex form to obtain;
[tex]f(x)=(x-2)^2-1[/tex]
This is the graph of the parent function [tex]h(x)=x^2[/tex] shifted, 2 units to the right and 1 unit down.
The second function is
[tex]g(x)=-x^2+3[/tex]
This is the graph of the parent function [tex]h(x)=x^2[/tex] reflected in the x-axis and shifted up 3 units.
The graph of the two functions are shown in the attachment.
The solution to f(x)=g(x) is where the two graphs meet.
The two graphs intersected at
(0,3) and (2,-1)