In ΔPQR, point C is the centroid. If CZ = 8, then QC =
A) 4
B) 8
C) 16
D) 24

Answer:
QC=16 this is correct on usa testprep
Step-by-step explanation:
The centroid of a triangle is the point of concurrency of the median lines of
the triangle.
The length of segment [tex]\overline{QC}[/tex] is C) 16
Reasons:
The given parameters are;
Point C = The centroid of ΔPQR
[tex]\overline{CZ}[/tex] = 8
Required:
The length of segment QC
Solution;
Given that point C is the centroid of the triangle ΔPQR, we have;
[tex]\overline{QC} = \dfrac{2}{3} \times \overline{QZ}[/tex]
[tex]\overline{CZ}= \dfrac{1}{3} \times \overline{QZ}[/tex]
Therefore;
[tex]\overline{CZ}= \dfrac{1}{2} \times \overline{QC}[/tex]
[tex]\overline{QC} = 2 \times \overline{CZ}[/tex]
[tex]\overline{QC} = 2 \times 8 = 16[/tex]
Learn more here:
https://brainly.com/question/1747484