Respuesta :

Answer:

QC=16 this is correct on usa testprep

Step-by-step explanation:

The centroid of a triangle is the point of concurrency of the median lines of

the triangle.

The length of segment [tex]\overline{QC}[/tex] is C) 16

Reasons:

The given parameters are;

Point C = The centroid of ΔPQR

[tex]\overline{CZ}[/tex] = 8

Required:

The length of  segment QC

Solution;

Given that point C is the centroid of the triangle ΔPQR, we have;

[tex]\overline{QC} = \dfrac{2}{3} \times \overline{QZ}[/tex]

[tex]\overline{CZ}= \dfrac{1}{3} \times \overline{QZ}[/tex]

Therefore;

[tex]\overline{CZ}= \dfrac{1}{2} \times \overline{QC}[/tex]

[tex]\overline{QC} = 2 \times \overline{CZ}[/tex]

[tex]\overline{QC} = 2 \times 8 = 16[/tex]

  • [tex]\underline{\overline{QC} = 16}[/tex]

Learn more here:

https://brainly.com/question/1747484