which statement about g(x)=x^2-576 is true
a. the zeros, -288 and 288, can be found when 0=(x+288)(x-288.
b. the only zero,288 , can be found when 0=(x-288)^2.
c. the zeros, -24 and 24, can be found when 0= (x+24)(x-24).
d. the only zero, 24, can be found when 0=(x-24)^2

Respuesta :

Answer:

c. the zeros, -24 and 24, can be found when 0= (x+24)(x-24).

Step-by-step explanation:

The given function is

[tex]g(x)=x^2-576[/tex]

When we equate the function to zero, we obtai;

[tex]x^2-576=0[/tex]

Use difference of two squares:

[tex]x^2-24^2=0[/tex]

[tex](x-24)(x+24)=0[/tex]

Use the zero product property to obtain;

[tex]x-24=0,\:and\:x+24=0[/tex]

This implies that;

[tex]x=24,\:and\:x=-24[/tex]

The correct choice is C

Answer:

The zeros, -24 and 24, can be found when 0= (x+24)(x-24).

Step-by-step explanation: