Respuesta :

Answer:

Option B. [tex]XY=15\ in[/tex]

Step-by-step explanation:

step 1

Find the scale factor

we know that

If two figures are similar, then the ratio of its areas is equal to the scale factor squared

Let

z----> the scale factor

x----> area of the larger pentagon (UVWXY)

y----> area of the smaller pentagon (LMNPO)

[tex]z^{2}=\frac{x}{y}[/tex]

we have

[tex]x=198\ in^{2}[/tex]

[tex]y=88\ in^{2}[/tex]

substitute

[tex]z^{2}=\frac{198}{88}[/tex]

[tex]z^{2}=2.25[/tex]

[tex]z=1.5[/tex]

step 2

Find XY

we know that

If two figures are similar, then the ratio of its corresponding sides is equal to the scale factor

Let

z----> the scale factor

x----> side XY of the larger pentagon (UVWXY)

y----> side OP of the smaller pentagon (LMNPO)

[tex]z=\frac{x}{y}[/tex]

we have

[tex]z=1.5[/tex]

[tex]y=10\ in[/tex]

substitute

[tex]1.5=\frac{x}{10}[/tex]

[tex]x=1.5*10=15\ in[/tex]

therefore

[tex]XY=15\ in[/tex]