What are the amplitude, period, and phase shift of the given function?
f(t)= -1/2 sin (3t-2π)

Answer:
C
Step-by-step explanation:
For a sine/cos function given in the form f(x) = A sin (Bx+C) , we can say:
|A| is the amplitude
2π/B is the period, and
-C/B is the phase shift
For the function given [tex]f(t)=-\frac{1}{2}sin(3t-2\pi)[/tex]
A = [tex]\frac{1}{2}[/tex]
B = 3
C = -2π
Using the information given, we can find:
Amplitude is [tex]|-\frac{1}{2}|\\=\frac{1}{2}[/tex]
Period is [tex]\frac{2\pi}{3}[/tex]
Phase Shift is [tex]-\frac{-2\pi}{3}\\=\frac{2\pi}{3}[/tex]
Hence, the correct answer choice is C
Answer:
c.
Step-by-step explanation:
amplitude:1/2
phase shift: 2/3 pi
period: 2/3 pi