what is the product? 5[2,3,4,9,-1,-7,11,5,-3]

Answer:
[tex]\large\boxed{\left[\begin{array}{ccc}10&15&20\\45&-5&-35\\55&25&-15\end{array}\right] }[/tex]
Step-by-step explanation:
[tex]n\times\left[\begin{array}{ccc}a&b&c\\d&e&f\\g&h&i\end{array}\right] =\left[\begin{array}{ccc}(n)(a)&(n)(b)&(n)(c)\\(n)(d)&(n)(e)&(n)(f)\\(n)(g)&(n)(h)&(n)(i)\end{array}\right] \\\\===============================[/tex]
[tex]5\left[\begin{array}{ccc}2&3&4\\9&-1&-7\\11&5&-3\end{array}\right]\\\\=\left[\begin{array}{ccc}(5)(2)&(5)(3)&(5)(4)\\(5)(9)&(5)(-1)&(5)(-7)\\(5)(11)&(5)(5)&(5)(-3)\end{array}\right] \\\\=\left[\begin{array}{ccc}10&15&20\\45&-5&-35\\55&25&-15\end{array}\right][/tex]
Product is [tex]\left[\begin{array}{ccc}10&15&20\\45&-5&-35\\55&25&-15\end{array}\right][/tex].
Given:
[tex]5\left[\begin{array}{ccc}2&3&4\\9&-1&-7\\11&5&-3\end{array}\right][/tex]
We have to find the product of the given matrix.
We know, when any constant is multiplied by the given matrix then we get the direct product of the matrices.
If Aₙ is a matrix of n×n and a is constant then:
⇒ a Aₙ = aAₙ
[tex]5\left[\begin{array}{ccc}2&3&4\\9&-1&-7\\11&5&-3\end{array}\right][/tex]
[tex]=\left[\begin{array}{ccc}10&15&20\\45&-5&-35\\55&25&-15\end{array}\right][/tex]
Therefore, the product is [tex]\left[\begin{array}{ccc}10&15&20\\45&-5&-35\\55&25&-15\end{array}\right][/tex].
Learn more about the Matrix here: https://brainly.com/question/14414517
#SPJ2