Respuesta :

gmany

Answer:

[tex]\large\boxed{\left[\begin{array}{ccc}10&15&20\\45&-5&-35\\55&25&-15\end{array}\right] }[/tex]

Step-by-step explanation:

[tex]n\times\left[\begin{array}{ccc}a&b&c\\d&e&f\\g&h&i\end{array}\right] =\left[\begin{array}{ccc}(n)(a)&(n)(b)&(n)(c)\\(n)(d)&(n)(e)&(n)(f)\\(n)(g)&(n)(h)&(n)(i)\end{array}\right] \\\\===============================[/tex]

[tex]5\left[\begin{array}{ccc}2&3&4\\9&-1&-7\\11&5&-3\end{array}\right]\\\\=\left[\begin{array}{ccc}(5)(2)&(5)(3)&(5)(4)\\(5)(9)&(5)(-1)&(5)(-7)\\(5)(11)&(5)(5)&(5)(-3)\end{array}\right] \\\\=\left[\begin{array}{ccc}10&15&20\\45&-5&-35\\55&25&-15\end{array}\right][/tex]

Product is [tex]\left[\begin{array}{ccc}10&15&20\\45&-5&-35\\55&25&-15\end{array}\right][/tex].

What is a Matrix?

  • It is represented by the combination of rows and columns.
  • Each entry in the matrix is called an element.
  • Matrices have major importance in various fields.

Given:

[tex]5\left[\begin{array}{ccc}2&3&4\\9&-1&-7\\11&5&-3\end{array}\right][/tex]

We have to find the product of the given matrix.

We know, when any constant is multiplied by the given matrix then we get the direct product of the matrices.

If Aₙ is a matrix of n×n and a is constant then:

a  Aₙ = aAₙ

[tex]5\left[\begin{array}{ccc}2&3&4\\9&-1&-7\\11&5&-3\end{array}\right][/tex]

[tex]=\left[\begin{array}{ccc}10&15&20\\45&-5&-35\\55&25&-15\end{array}\right][/tex]

Therefore, the product is [tex]\left[\begin{array}{ccc}10&15&20\\45&-5&-35\\55&25&-15\end{array}\right][/tex].

Learn more about the Matrix here: https://brainly.com/question/14414517

#SPJ2