Determine the length of arc jl

[tex]C) \ \frac{25}{18}\pi[/tex]
The arc length of a circumference is a fraction of it that measures 360 degrees. Suppose you have an arc whose central angle [tex]\theta[/tex] degrees, the arc of a circumference can be found as [tex]arc=\frac{\pi\theta}{360}(2r)[/tex] where [tex]\frac{\pi\theta}{360}[/tex] represents that fraction. Therefore:
[tex]arc \ length=\frac{\pi\theta}{360}(2r)=\frac{\pi\theta r}{180} \\ \\ \ \therefore=\frac{125\times 2 \times \pi}{180} =\boxed{\frac{25}{18}\pi}[/tex]