Respuesta :

Answer:

So, Option B is correct.

Step-by-step explanation:

Considering A and B are independent events

The formula used for:

P(A|B) = P(A∩B) / P(B)

P(A∩B) = 2/9

P(B) = 1/3

Putting the values in formula:

P(A|B) = P(A∩B) / P(B)

P(A|B) = 2/9 / 1/3

P(A|B) = 2/9 * 3

p(A|B) = 2/3

So, Option B is correct.

Answer: B. [tex]\dfrac{2}{3}[/tex]

Step-by-step explanation:

We know that the formula to find the conditional probability of A given that B is given by :-

[tex]P(A|B)=\dfrac{P(A\cap B)}{P(B)}[/tex]

Given : [tex]P(A\cap B)=\dfrac{2}{9}[/tex]

[tex]P(B)=\dfrac{1}{3}[/tex]

Then , the conditional probability of A given that B is given by :-

[tex]P(A|B)=\dfrac{\dfrac{2}{9}}{\dfrac{1}{3}}\\\\\Rightarrow\ P(A|B)=\dfrac{2}{3}[/tex]