Respuesta :

Answer:

[tex]f^{-1}(x)=\pm \sqrt{49x^2-16}[/tex]

Not a function.

Step-by-step explanation:

The given function is;

[tex]f(x)=-\frac{1}{7}\sqrt{16-x^2}[/tex]

Let [tex]y=-\frac{1}{7}\sqrt{16-x^2}[/tex]

Interchange x and y;

[tex]x=-\frac{1}{7}\sqrt{16-y^2}[/tex]

Solve for y;

[tex]-7x=\sqrt{16-y^2}[/tex]

Square both sides

[tex](-7x)^2=(\sqrt{16-y^2})^2[/tex]

[tex]49x^2^2=16-y^2[/tex]

[tex]49x^2^2-16=y^2[/tex]

[tex]y=\pm \sqrt{49x^2-16}[/tex]

The inverse is

[tex]f^{-1}(x)=\pm \sqrt{49x^2-16}[/tex]

[tex]f^{-1}(x)=\pm \sqrt{49x^2-16}[/tex] is not a function because one x-value maps onto to different y-values.

Answer:

f^-1(x)= + or - square root 49x^2-16

Step-by-step explanation:

edge 2020 2021