What are the solutions to the system of equations? y=− x 2 +5x+6 −6x+y=6
(0,−1) and (6, 0)
(−1, 0) and (0, 6)
(0, 6) and (1, 2)
(−1, 0) and (6, 0)

Respuesta :

Answer:

option B

(−1, 0) and (0, 6)

Step-by-step explanation:

Given in the question two equations,

Equation 1

y =−x² + 5x + 6

Equation 2

−6x + y = 6

plug value of y in second equation

−6x −x² + 5x + 6 = 6

-x² -6x + 5x +6 - 6 = 0

-x² - x + 0 = 0

-x² -x = 0

-x(x+1) = 0

x = 0

and

x = -1

plug value of x in second equation to find y

x = 0

−6(0) + y = 6

 0 + y = 6

 y = 6

 and

x = -1

−6(-1) + y = 6

6 + y = 6

y = 0

Answer:

(−1, 0) and (0, 6)

Step-by-step explanation:

The given system of equations is

[tex]y=-x^2+5x+6[/tex]

and

[tex]-6x+y=6[/tex]

Solve for y in this second equation

[tex]y=6x+6[/tex]

We equate the two equations to get;

[tex]-x^2+5x+6=6x+6[/tex]

[tex]x^2+x=0[/tex]

[tex]x(x+1)=0[/tex]

x=0,x=-1

When x=0,

y=6(0)+6

y=6

When x=-1

y=6(-1)+6

y=0