Respuesta :
Answer:
[tex]r = \sqrt[3]{\frac{3V}{4 \pi}}[/tex]
Step-by-step explanation:
From the formula of volume of a sphere we have to isolate "r" on one side of the equation i.e. we have to make "r" the subject of the equation.
[tex]V=\frac{4}{3} \pi r^{3}\\\\ \text{Multiplying both sides by 3/4 we get}\\\\\frac{3V}{4} = \pi r^{3}\\\\ \text{Dividing both sides by } \pi \\\\ \frac{3V}{4 \pi} = r^{3}\\\\\text{Takeing cube root of both sides}\\\\\sqrt[3]{\frac{3V}{4 \pi}} = r[/tex]
Therefore:
[tex]r = \sqrt[3]{\frac{3V}{4 \pi}}[/tex]
Answer:
The formula for radius of sphere is r = ∛(3V/4π)
or
r = (3V/4π)¹/³
Step-by-step explanation:
It is given formula for volume of sphere.
Volume of sphere = 4/3 πr³
Where r is the radius of sphere
To find the radius r of sphere
Volume V = 4/3 πr³
r³ = 3V/4π
r = ∛(3V/4π)
Therefore formula for radius of sphere is r = ∛(3V/4π)
or
r = (3V/4π)¹/³