Respuesta :

Answer:

The solution is:

Part A. [tex]\sqrt{5}^{\frac{7k}{3}})[/tex] which is sqrt(5)^7k/3[/tex]

Part B. k = 18/7

Step-by-step explanation:

Part A.

To solve this part, we're going two use THREE important properties of exponents:

1. [tex](x^{n})^{m} = x^{nm}[/tex]

2. [tex]\frac{x^{n}}{x^{m}} = x^{n-m}[/tex]

3. [tex]\sqrt[n]{x^{m}} = x^{\frac{m}{n} }[/tex]

Let's work the numerator using the properties 1, 2 and 3:

[tex](\sqrt{5}^{3} )^{\frac{k}{9} } }  = (\sqrt{5}^{3\frac{k}{9}}) = (\sqrt{5}^{\frac{k}{3}})[/tex]

Let's work the denominator using the properties 1, 2 and 3:

[tex](\sqrt{5}^{6} )^{-\frac{k}{3} } }  = (\sqrt{5}^{6\frac{k}{3}}) = (\sqrt{5}^(2k))[/tex]

Now dividing the numerator by the denominator:

[tex]\sqrt{5}^{\frac{k}{3}-(-2k)})=\sqrt{5}^{\frac{7k}{3}})[/tex]

Part B

if [tex]5^{\frac{3}{2} } 5^{\frac{3}{2}} = \sqrt{5}^{\frac{7k}{3}})[/tex]

Then:

[tex]5^{3} = 5^{\frac{7k}{6}})[/tex]

So [tex]\frac{7k}{6}} = 3[/tex]

Solving for k, we have:

k = 18/7