Respuesta :

For this case we must find the product of the following expression:

[tex](y ^ 2 + 3y + 7) (8y ^ 2 + y + 1)[/tex]

We apply distributive property, which states that:

[tex](a + b) (c + d) = ac + ad + bc + bd[/tex]

So:[tex](y ^ 2 + 3y + 7) (8y ^ 2 + y + 1) =\\(y ^ 2) (8y ^ 2) + (y ^ 2) (y) + (y ^ 2) (1) + (3y) (8y ^ 2) + (3y) (y) + (3y) (1 ) + (7) (8y ^ 2) + (7) (y) + (7) (1) =\\8y ^ 4 + y ^ 3 + y ^ 2 + 24y ^ 3 + 3y ^ 2 + 3y + 56y ^ 2 + 7y + 7 =[/tex]

We add similar terms:

[tex]8y ^ 4 + 25y ^ 3 + 60y ^ 2 + 10y + 7[/tex]

Answer:

Option D