Answer:
The possible values of x are:
x= [tex]\frac{-1+\sqrt{3}}{4} \,\,or\,\, x= 0.18[/tex]
and
x= [tex]\frac{-1-\sqrt{3}}{4} \,\, or \,\, x= -0.68[/tex]
Step-by-step explanation:
[tex]8x^2+4x+1=0[/tex]
Using Quadratic formula to solve this equation:
[tex]x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}\\a = 8 \,\, b = 4\,\, c = -1\\Putting \,\, values \,\, in \,\, the\,\, equation\\x= \frac{-4\pm\sqrt{(4)^2-4(8)(-1)}}{2(8)}\\x= \frac{-4\pm\sqrt{16+32}}{16}\\x= \frac{-4\pm\sqrt{48}}{16}\\x= \frac{-4+ \sqrt{48}}{16} \,\, and \,\, x= \frac{-4- \sqrt{48}}{16}\\x= \frac{-1+ \sqrt{3}}{4} \,\, and \,\, x= \frac{-1- \sqrt{3}}{4}[/tex]
The possible values of x are:
x= [tex]\frac{-1+\sqrt{3}}{4} \,\,or\,\, x= 0.18[/tex]
and
x= [tex]\frac{-1-\sqrt{3}}{4} \,\, or \,\, x= -0.68[/tex]