Respuesta :
Answer:
Option B.
Step-by-step explanation:
If a quadratic equation is defined as
[tex]ax^2+bx+c=0[/tex] .... (1)
then the quadratic formula is
[tex]x=\dfrac{-b\pm \sqrt{b^2-4ac}}{2a}[/tex]
The given equation is
[tex]10x^2=6+9x[/tex]
It can rewritten as
[tex]10x^2-9x-6=0[/tex] .... (2)
On comparing (1) and (2) we get
[tex]a=10,b=-9,c=-6[/tex]
Using quadratic formula we get
[tex]x=\dfrac{-(-9)\pm \sqrt{(-9)^2-4(10)(-6)}}{2(10)}[/tex]
[tex]x=\dfrac{9\pm \sqrt{81+240}}{20}[/tex]
[tex]x=\dfrac{9\pm \sqrt{321}}{20}[/tex]
Therefore, the correct option is B.