Find the particular solution to y'=2sin(x) given the general solution is y=C-2cos(x) and the initial condition y(pi/3)=1

-2cos(x)

3-2cos(x)

2-3cos(x)

-1-2cos(x)

Respuesta :

ANSWER

The particular solution is:

[tex]y=2-2 \cos(x)[/tex]

EXPLANATION

The given Ordinary Differential Equation is

[tex]y'=2 \sin(x)[/tex]

The general solution to this Differential equation is:

[tex]y=C-2 \cos(x)[/tex]

To find the particular solution, we need to apply the initial conditions (ICs)

[tex]y( \frac{\pi}{3} ) = 1[/tex]

This implies that;

[tex]C-2 \cos( \frac{\pi}{3} ) = 1[/tex]

[tex]C-2( \frac{1}{2} )= 1[/tex]

[tex]C-1= 1[/tex]

[tex]C= 1 + 1 = 2[/tex]

Hence the particular solution is

[tex]y=2-2 \cos(x)[/tex]