Complete the identity

ANSWER
[tex]\frac{( \csc x + 1)( \csc(x) - 1)}{ \cot ^{2} (x) }=1 [/tex]
EXPLANATION
The given identity is:
[tex] \frac{( \csc x + 1)( \csc(x) - 1)}{ \cot ^{2} (x) } [/tex]
Recall that:
[tex](x + 1)(x - 1) = {x}^{2} - {y}^{2} [/tex]
We apply difference of two squares to the numerator to get:
[tex] \frac{\csc ^{2} x - 1}{ \cot ^{2} (x) } [/tex]
Also recall the Pythagorean Identity.
[tex]1 + \cot^{2} (x) = \csc ^{2} (x) [/tex]
This implies that,.
[tex] \cot^{2} (x) = \csc ^{2} (x) - 1[/tex]
Hence our identity becomes:
[tex]\frac{\cot ^{2} x }{ \cot ^{2} (x) } = 1[/tex]
Answer:
Step-by-step explanation:
Given expression is [tex]\frac{\left(\csc\left(x\right)+1\right)\left(\csc\left(x\right)-1\right)}{\cot^2\left(x\right)}[/tex]
Now we need to simplify that to complete the identity.
[tex]\frac{\left(\csc\left(x\right)+1\right)\left(\csc\left(x\right)-1\right)}{\cot^2\left(x\right)}[/tex]
[tex]=\frac{\csc^2\left(x\right)+1\csc\left(x\right)-1\csc\left(x\right)-1^2}{\cot^2\left(x\right)}[/tex]
[tex]=\frac{\csc^2\left(x\right)+1\csc\left(x\right)-1\csc\left(x\right)-1}{\cot^2\left(x\right)}[/tex]
[tex]=\frac{\csc^2\left(x\right)-1}{\cot^2\left(x\right)}[/tex]
Apply formula
[tex]\csc^2\left(\theta\right)=1+\cot^2\left(\theta\right)[/tex]
[tex]=\frac{\cot^2\left(x\right)}{\cot^2\left(x\right)}[/tex]
[tex]=1[/tex]
Hence required identity is
[tex]\frac{\left(\csc\left(x\right)+1\right)\left(\csc\left(x\right)-1\right)}{\cot^2\left(x\right)}=1[/tex]