Respuesta :
Answer:
Final answer is [tex]x^2-x-12[/tex].
Step-by-step explanation:
Given expression is [tex]\left(x-4\right)\left(x+3\right)[/tex].
Now we need to find the product of the given expression [tex]\left(x-4\right)\left(x+3\right)[/tex].
[tex]\left(x-4\right)\left(x+3\right)[/tex]
[tex]=x\left(x-4\right)+3\left(x-4\right)[/tex]
[tex]=x^2-4x+3x-12[/tex]
combine like terms
[tex]=x^2-1x-12[/tex]
[tex]=x^2-x-12[/tex]
Hence final answer is [tex]x^2-x-12[/tex].
ANSWER
[tex](x-4)(x+3) = {x}^{2} - x - 12[/tex]
EXPLANATION
The given product is (x-4)(x+3)
We expand using the distributive property to obtain:
[tex](x-4)(x+3) = x(x + 3) - 4(x + 3)[/tex]
Expand the parenthesis to obtain:
[tex](x-4)(x+3) = {x}^{2} + 3x- 4x - 12[/tex]
Combine the similar terms to get:
[tex](x-4)(x+3) = {x}^{2} - x - 12[/tex]