Respuesta :

Answer:

Final answer is [tex]x^2-x-12[/tex].

Step-by-step explanation:

Given expression is [tex]\left(x-4\right)\left(x+3\right)[/tex].

Now we need to find the product of the given expression [tex]\left(x-4\right)\left(x+3\right)[/tex].

[tex]\left(x-4\right)\left(x+3\right)[/tex]

[tex]=x\left(x-4\right)+3\left(x-4\right)[/tex]

[tex]=x^2-4x+3x-12[/tex]

combine like terms

[tex]=x^2-1x-12[/tex]

[tex]=x^2-x-12[/tex]

Hence final answer is [tex]x^2-x-12[/tex].

ANSWER

[tex](x-4)(x+3) = {x}^{2} - x - 12[/tex]

EXPLANATION

The given product is (x-4)(x+3)

We expand using the distributive property to obtain:

[tex](x-4)(x+3) = x(x + 3) - 4(x + 3)[/tex]

Expand the parenthesis to obtain:

[tex](x-4)(x+3) = {x}^{2} + 3x- 4x - 12[/tex]

Combine the similar terms to get:

[tex](x-4)(x+3) = {x}^{2} - x - 12[/tex]