Respuesta :

Answer:

Other answer.

Step-by-step explanation:

[tex]f(x) = 3(x-1)^4\\ f(-x) = 3(-x-1)^4 = 3\big(-(x+1)\big)^4 = 3(x+1)^4 \\ \\ f(-x)\neq f(x) \\ f(-x)\neq -f(x)\\ \\ \Rightarrow \text{The function is neither odd or even}[/tex]

Answer:

The function is neither even nor odd.    

Step-by-step explanation:

Given : Function [tex]f(x)=3(x-1)^4[/tex]

To find : Determine whether the function is even or odd ?

Solution :

Rules to determine the function is even or odd :

If f(x)=f(-x) then the function is even.

If f(x)=-f(x) then the function is odd.

Now, Test for even function

[tex]f(x)=3(x-1)^4[/tex]

[tex]f(-x)=3(-x-1)^4[/tex]

[tex]f(-x)=3(-(x+1)^4[/tex]

[tex]f(-x)=3(x+1)^4[/tex]

[tex]f(x)\neq f(-x)[/tex] so function is not even.

Test for odd function,

[tex]f(x)=3(x-1)^4[/tex]

[tex]-f(x)=-3(x-1)^4[/tex]

[tex]f(x)\neq -f(x)[/tex] so function is not odd.

So, The function is neither even nor odd.