The maximum Compton shift in wavelength occurs when a photon isscattered through 180^\circ .

What scattering angle will produce a wavelength shift of one-fourththe maximum? Express the answer as a whole number indegrees.

Respuesta :

Answer: [tex]90\°[/tex]

Explanation:

The Compton Shift [tex]\Delta \lambda[/tex] in wavelength when the photons are scattered is given by the following equation:

[tex]\Delta \lambda=\lambda_{c}(1-cos\theta)[/tex]     (1)

Where:

[tex]\lambda_{c}=2.43(10)^{-12} m[/tex] is a constant whose value is given by [tex]\frac{h}{m_{e}c}[/tex], being [tex]h[/tex] the Planck constant, [tex]m_{e}[/tex] the mass of the electron and [tex]c[/tex] the speed of light in vacuum.

[tex]\theta)[/tex] the angle between incident phhoton and the scatered photon.

We are told the maximum Compton shift in wavelength occurs when a photon isscattered through [tex]180\°[/tex]:

[tex]\Delta \lambda_{max}=\lambda_{c}(1-cos(180\°))[/tex]     (2)

[tex]\Delta \lambda_{max}=\lambda_{c}(1-(-1))[/tex]    

[tex]\Delta \lambda_{max}=2\lambda_{c}[/tex]     (3)

Now, let's find the angle that will produce a fourth of this maximum value found in (3):

[tex]\frac{1}{4}\Delta \lambda_{max}=\frac{1}{4}2\lambda_{c}(1-cos\theta)[/tex]      (4)

[tex]\frac{1}{4}\Delta \lambda_{max}=\frac{1}{2}\lambda_{c}(1-cos\theta)[/tex]      (5)

If we want [tex]\frac{1}{4}\Delta \lambda_{max}=\frac{1}{2}\lambda_{c}[/tex], [tex]1-cos\theta[/tex]   must be equal to 1:

[tex]1-cos\theta=1[/tex]   (6)

Finding [tex]\theta[/tex]:

[tex]1-1=cos\theta[/tex]

[tex]0=cos\theta[/tex]  

[tex]\theta=cos^{-1} (0)[/tex]  

Finally:

[tex]\theta=90\°[/tex]    This is the scattering angle that will produce [tex]\frac{1}{4}\Delta \lambda_{max}[/tex]