Answer:
(6, -70) is not on the graph
Step-by-step explanation:
we have
[tex]y=-3x^{2}+6x-4[/tex]
we know that
If a ordered pair is on the graph of the quadratic equation, then the ordered pair must satisfy the quadratic equation
Verify each case
Substitute the x-coordinate of the ordered pair in the quadratic equation to find the value of y and then compare the results
case 1) (6, -70)
For x=-6
[tex]y=-3(-6)^{2}+6(-6)-4=-148[/tex]
[tex]-148\neq-70[/tex]
therefore
the ordered pair is not on the graph
case 2) (4, -28)
For x=4
[tex]y=-3(4)^{2}+6(4)-4=-28[/tex]
[tex]-28=-28[/tex]
therefore
the ordered pair is on the graph
case 3) (-8,-244)
For x=-8
[tex]y=-3(-8)^{2}+6(-8)-4=-148[/tex]
[tex]-244=-244[/tex]
therefore
the ordered pair is on the graph
case 4) (12,-364)
For x=12
[tex]y=-3(12)^{2}+6(12)-4=-148[/tex]
[tex]-364=-364[/tex]
therefore
the ordered pair is on the graph