contestada

Given the graph above, write the equation as a cosine function
A. y = .25 cos ø
B. y = .75 cos 2ø
C. y = -.75 cos 2ø
D. y = -.50 cos 3ø
E. y = cos 4ø

Given the graph above write the equation as a cosine function A y 25 cos ø B y 75 cos 2ø C y 75 cos 2ø D y 50 cos 3ø E y cos 4ø class=

Respuesta :

Answer: Option B

[tex]y = 0.75cos(2\phi)[/tex]

Step-by-step explanation:

The general cosine function has the following form  

[tex]y = Acos(b\phi) + k[/tex]

Where A is the amplitude: half the vertical distance between the highest peak and the lowest peak of the wave.  

[tex]\frac{2\pi}{b}[/tex] is the period: time it takes the wave to complete a cycle.

k is the vertical displacement.

The maximum value of y is is 0.75 and the minimum is -0.75. Then the amplitude A is:  

[tex]A =\frac{0.75-(-0.75)}{2}\\\\A= 0.75[/tex]

Then [tex]k=0[/tex]

The cycle is repeated every [tex]\pi[/tex] units  

So the period is [tex]\pi[/tex]

Thus:

[tex]\frac{2\pi}{b}=\pi\\\\ b=\frac{2\pi}{\pi}\\\\ b=2[/tex]

The function is:

[tex]y = 0.75cos(2\phi)[/tex]

when [tex]\phi=0[/tex] y is maximum therefore [tex]y=0.75[/tex] As shown in the graph