Answer:
[tex]100\ yd[/tex]
Step-by-step explanation:
we know that
Applying the law of cosines
[tex]c^{2} =a^{2}+b^{2}-2(a)(b)cos(C)[/tex]
In this problem we have
c-----> is the distance from her starting point
[tex]a=100\ yd[/tex]
[tex]b=100\ yd[/tex]
[tex]C=60\°[/tex]
substitute
[tex]c^{2} =100^{2}+100^{2}-2(100)(100)cos(60\°)[/tex]
[tex]c^{2} =10,000+10,000-10,000[/tex]
[tex]c^{2} =10,000[/tex]
[tex]c=100\ yd[/tex]