Respuesta :

Answer:

[tex]BC=11\ cm[/tex]

Step-by-step explanation:

step 1

Find the measure of the arc DC

we know that

The inscribed angle measures half of the arc comprising

[tex]m\angle DBC=\frac{1}{2}[arc\ DC][/tex]

substitute the values

[tex]60\°=\frac{1}{2}[arc\ DC][/tex]

[tex]120\°=arc\ DC[/tex]

[tex]arc\ DC=120\°[/tex]

step 2

Find the measure of arc BC

we know that

[tex]arc\ DC+arc\ BC=180\°[/tex] ----> because the diameter BD divide the circle into two equal parts

[tex]120\°+arc\ BC=180\°[/tex]

[tex]arc\ BC=180\°-120\°=60\°[/tex]

step 3

Find the measure of angle BDC

we know that

The inscribed angle measures half of the arc comprising

[tex]m\angle BDC=\frac{1}{2}[arc\ BC][/tex]

substitute the values

[tex]m\angle BDC=\frac{1}{2}[60\°][/tex]

[tex]m\angle BDC=30\°[/tex]

therefore

The triangle DBC is a right triangle ---> 60°-30°-90°

step 4

Find the measure of BC

we know that

In the right triangle DBC

[tex]sin(\angle BDC)=BC/BD[/tex]

[tex]BC=(BD)sin(\angle BDC)[/tex]

substitute the values

[tex]BC=(22)sin(30\°)=11\ cm[/tex]