Respuesta :

Answer:

a = -8

b = -2

Step-by-step explanation:

We have been given the following radical expression;

[tex]\sqrt[3]{x^{10} }[/tex]

The radical can be expressed using the law of exponents;

[tex]\sqrt[n]{x}=x^{\frac{1}{n} }[/tex]

The radical can thus be re-written as;

[tex]\sqrt[3]{x^{10} }=(x^{10})^{\frac{1}{3} }[/tex]

Using the law of exponents;

[tex](a^{b})^{c}=a^{bc}[/tex]

The last expression becomes;

[tex](x^{10})^{\frac{1}{3} }=x^{\frac{10}{3} }=x^{3}*x^{\frac{1}{3} }\\\\=x^{3}\sqrt[3]{x}[/tex]

substituting x with -2 yields;

[tex]-2^{3}\sqrt[3]{-2}=-8\sqrt[3]{-2}[/tex]