Respuesta :

QUESTION 1

[tex] {3}^{x + 1} = {9}^{x + 3} [/tex]

This is the same as:

[tex] {3}^{x + 1} = {3}^{2(x + 3)} [/tex]

Equate the exponents.

x+1=2(x+3)

Expand:

x+1=2x+6

Group similar terms;

2x-x=1-6

x=-5

QUESTION 2

[tex] log(9x - 2) = log(4x + 3) [/tex]

Equate the arguments.

9x-2=4x+3

Group similar terms;

9x-4x=3+2

5x=5

Divide through by 5

x=1

QUESTION 3

[tex] log_{6}(5x + 4) = 2[/tex]

Take antilogarithm to obtain,

[tex]5x + 4 = {6}^{2} [/tex]

This implies that,

5x+4=36

5x=36-4

5x=32

x=32/5

or

[tex]x = 6 \frac{2}{5} [/tex]

QUESTION 4

[tex] log_{2}(x) + log_{2}(x - 3) = 2[/tex]

Use the product rule of logarithms:

[tex]log_{2}x(x - 3) = 2[/tex]

Take antilogarithm,

[tex] {x}^{2} - 3x = {2}^{2} [/tex]

[tex] {x}^{2} - 3x - 4 = 0[/tex]

Factor:

[tex](x + 1)(x - 4) = 0[/tex]

This implies that,

[tex]x = - 1 \: or \: x = 4[/tex]

But the domain is x>0, therefore the solution is

x=4

QUESTION 5

[tex]x=\log_{4}(11.2)[/tex]

[tex]x=\log_{4}(\frac{56}{5})[/tex]

[tex]x=\log_{4}(56)-\log_{4}(5)[/tex]

x=1.7 to the nearest tenth.

QUESTION 6

[tex]2e^{8x}=9.2[/tex]

Divide both sides by 2.

[tex]e^{8x}=4.6[/tex]

Take natural log of both sides

[tex]{8x}=\ln(4.6)[/tex]

[tex]{x}=\ln(4.6)\div 8[/tex]

x=0.2 to the nearest tenth.

Answer:

# The solution x = -5

# The solution is x = 1

# The solution is x = 6.4

# The solution is x = 4

# The solution is 1.7427

# The solution is 0.190757

Step-by-step explanation:

* Lets revise some rules of the exponents and the logarithmic equation

# Exponent rules:

1- b^m  ×  b^n  =  b^(m + n) ⇒ in multiplication if they have same base

  we add  the power

2- b^m  ÷  b^n =  b^(m – n) ⇒  in division if they have same base we

   subtract  the power

3- (b^m)^n = b^(mn) ⇒ if we have power over power we multiply

   them

4- a^m × b^m = (ab)^m ⇒ if we multiply different bases with same  

   power then we multiply them ad put over the answer the power

5- b^(-m) = 1/(b^m)  (for all nonzero real numbers b) ⇒ If we have

   negative power we reciprocal the base to get positive power

6- If  a^m  =  a^n  ,  then  m  =  n ⇒ equal bases get equal powers

7- If  a^m  =  b^m  ,  then  a  =  b    or    m  =  0

# Logarithmic rules:

1- [tex]log_{a}b=n-----a^{n}=b[/tex]

2- [tex]loga_{1}=0---log_{a}a=1---ln(e)=1[/tex]

3- [tex]log_{a}q+log_{a}p=log_{a}qp[/tex]

4- [tex]log_{a}q-log_{a}p=log_{a}\frac{q}{p}[/tex]

5- [tex]log_{a}q^{n}=nlog_{a}q[/tex]

* Now lets solve the problems

# [tex]3^{x+1}=9^{x+3}[/tex]

- Change the base 9 to 3²

∴ [tex]9^{x+3}=3^{2(x+3)}=3^{2x+6}[/tex]

∴ [tex]3^{x+1}=3^{2x+6}[/tex]

- Same bases have equal powers

∴ x + 1 = 2x + 6 ⇒ subtract x and 6 from both sides

∴ 1 - 6 = 2x - x

∴ -5 = x

* The solution x = -5

# ㏒(9x - 2) = ㏒(4x + 3)

- If ㏒(a) = ㏒(b), then a = b

∴ 9x - 2 = 4x + 3 ⇒ subtract 4x from both sides and add 2 to both sides

∴ 5x = 5 ⇒ divide both sides by 5

∴ x = 1

* The solution is x = 1

# [tex]log_{6}(5x+4)=2[/tex]

- Use the 1st rule in the logarithmic equation

∴ 6² = 5x + 4

∴ 36 = 5x + 4 ⇒ subtract 4 from both sides

∴ 32 = 5x ⇒ divide both sides by 5

∴ 6.4 = x

* The solution is x = 6.4

# [tex]log_{2}x+log_{2}(x-3)=2[/tex]

- Use the rule 3 in the logarithmic equation

∴ [tex]log_{2}x(x-3)=2[/tex]

- Use the 1st rule in the logarithmic equation

∴ 2² = x(x - 3) ⇒ simplify

∴ 4 = x² - 3x ⇒ subtract 4 from both sides

∴ x² - 3x - 4 = 0 ⇒ factorize it into two brackets

∴ (x - 4)(x + 1) = 0 ⇒ equate each bract by 0

∴ x - 4 = 0 ⇒ add 4 to both sides

∴ x = 4

OR

∵ x + 1 = 0 ⇒ subtract 1 from both sides

∴ x = -1

- We will reject this answer because when we substitute the value

 of x in the given equation we will find [tex]log_{2}(-1)[/tex] and this

 value is undefined, there is no logarithm for negative number

* The solution is x = 4

# [tex]log_{4}11.2=x[/tex]

- You can use the calculator directly to find x

∴ x = 1.7427

* The solution is 1.7427

# [tex]2e^{8x}=9.2[/tex] ⇒ divide the both sides by 2

∴ [tex]e^{8x}=4.6[/tex]

- Insert ln for both sides

∴ [tex]lne^{8x}=ln(4.6)[/tex]

- Use the rule [tex]ln(e^{n})=nln(e)[/tex] ⇒ ln(e) = 1

∴ 8x = ln(4.6) ⇒ divide both sides by 8

∴ x = ln(4.6)/8 = 0.190757

* The solution is 0.190757