Using the normal distribution, it is found that approximately 3366 students will score less than 66 on the test.
Normal Probability Distribution
The z-score of a measure X of a normally distributed variable with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex] is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
- The z-score measures how many standard deviations the measure is above or below the mean.
- Looking at the z-score table, the p-value associated with this z-score is found, which is the percentile of X.
In this problem, the mean and the standard deviation are given as follows:
[tex]\mu = 57, \sigma = 9[/tex]
The proportion of students that scored less than 66 is the p-value of Z when X = 66, hence:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{66 - 57}{9}[/tex]
Z = 1
Z = 1 has a p-value of 0.8413.
Out of 4000 students:
0.8413 x 4000 = 3366, which means that option C is correct.
More can be learned about the normal distribution at https://brainly.com/question/24663213
#SPJ2