Respuesta :

Answer:

D)4x + 6/(x + 1)(x - 1)

Step-by-step explanation:

A field is basically a rectangle, so to find the perimeter of our field we are using the formula for the perimeter of a rectangle

[tex]p=2(l+w)[/tex]

where

[tex]p[/tex] is the perimeter

[tex]l[/tex] is the length

[tex]w[/tex] is the width

We know from our problem that the field has length 2/x + 1 and width 5/x^2 -1, so [tex]l=\frac{2}{x+1}[/tex] and [tex]w=\frac{5}{x^2-1}[/tex].

Replacing values:

[tex]p=2(l+w)[/tex]

[tex]p=2(\frac{2}{x+1} +\frac{5}{x^2-1})[/tex]

Notice that the denominator of the second fraction is a difference of squares, so we can factor it using the formula [tex]a^2-b^2=(a+b)(a-b)[/tex] where [tex]a[/tex] is the first term and [tex]b[/tex] is the second term. We can infer that [tex]a=x^2[/tex] and [tex]b=1^2[/tex]. So, [tex]x^2-1=(x+1)(x-1)[/tex]. Replacing that:

[tex]p=2(\frac{2}{x+1} +\frac{5}{x^2-1})[/tex]

[tex]p=2(\frac{2}{x+1} +\frac{5}{(x+1)(x-1})[/tex]

We can see that the common denominator of our fractions is [tex](x+1)(x-1)[/tex]. Now we can simplify our fraction using the common denominator:

[tex]p=2(\frac{2(x-1)+5}{(x+1)(x-1)} )[/tex]

[tex]p=2(\frac{2x-2+5}{(x+1)(x-1)} )[/tex]

[tex]p=2(\frac{2x+3}{(x+1)(x-1)} )[/tex]

[tex]p=\frac{4x+6}{(x+1)(x-1)} [/tex]

We can conclude that the perimeter of the field is D)4x + 6/(x + 1)(x - 1).