Respuesta :

Answer:

As a fraction: [tex]y=\frac{56}{5}[/tex]

As a decimal: [tex]y=11.2[/tex]

As an ordered pair: [tex](0,\frac{56}{5} )[/tex] or [tex](0,11.2)[/tex]

Step-by-step explanation:

First we are using the slope formula to find the equation of our line:

[tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex]

Where

[tex]m[/tex] is the slope of the line

[tex](x_1,y_1)[/tex] are the coordinates of the first point

[tex](x_2,y_2)[/tex] are the coordinates of the second point

our first point is (8, 0) and our second point is (3, 7), so [tex]x_1=8[/tex], [tex]y_1=0[/tex], [tex]x_2=3[/tex], and [tex]y_2=7[/tex].

Replacing values:

[tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex]

[tex]m=\frac{7-0}{3-8}[/tex]

[tex]m=\frac{7}{-5}[/tex]

[tex]m=-\frac{7}{5}[/tex]

Now, to complete the equation of our line (and find its y-intercept), we are using the point slope formula:

[tex]y-y_1=m(x-x_1)[/tex]

Where

[tex]m[/tex] is the slope

[tex](x_1,y_1)[/tex] are the coordinates of the first point

Replacing values:

[tex]y-0=-\frac{7}{5} (x-8)[/tex]

[tex]y=-\frac{7}{5} x+\frac{56}{5}[/tex]

Now, in a line of the form [tex]y=mx+b[/tex], [tex]b[/tex] is the way intercept. We can infer form our line that [tex]b=\frac{56}{5}[/tex], so the y-intercept of the line joining the points (8, 0) and (3, 7) is [tex]\frac{56}{5}[/tex].