Respuesta :
Answer:
h(x) = –5 |x| + 10
k(x)=1/4(x-4)^2+4
m(x)=1/4 |x-8| +6
Step-by-step explanation:
The given function is:
g(x) = |x + 3| + 4
At y-intercept x=0,
g(0) = |0 + 3| + 4
g(0) = 3 + 4=7
The y-intercept of this function is 7.
We look for the functions with y-intercepts greater than 7.
[tex]f(x)=-2(x-8)^2[/tex]
[tex]f(0)=-2(0-8)^2[/tex]
[tex]f(0)=-128[/tex]
h(x) = –5 |x| + 10
h(x) = –5 |0| + 10=10
[tex]j(x)=-4(x+2)^2+8[/tex]
[tex]j(0)=-4(0+2)^2+8=-8[/tex]
[tex]k(x)=\frac{1}{4}(x-4)^2+4[/tex]
[tex]k(0)=\frac{1}{4}(0-4)^2+4=8[/tex]
m(x)=1/4 |x-8| +6
m(0)=1/4 |0-8| +6=8
Answer with explanation:
The given function is
g(x)=|x+3|+4
The meaning of Y intercept is the distance between origin and Point where the curve cuts Y axis.
In , g(x), put x=0
g(0)=|0+3|+4
=3+4
=7
So, Length of Y intercept =7 unit
2.
f(x)=-2(x-8)²
f(0)=-2×(0-8)²
= -2 × 64
= -128
Length of Y intercept =-128 unit
3.
h(x)=-5|x|+10
h(0)=-5 × |0| +10
=10
Length of Y intercept =10 unit
4.
j(x)=-4(x+2)²+8
j(0)=-4×(0+2)²+8
=-4 × 4+8
= -16 +8
= -8
Length of Y intercept =-8 unit
4.
[tex]\rightarrow k(x)=\frac{1}{4} \times (x-4)^2+4\\\\\rightarrow k(0)=\frac{1}{4} \times (0-4)^2+4\\\\\rightarrow k(0)= 4+4\\\\=8[/tex]
Length of Y intercept =8 unit
5.
[tex]\rightarrow m(x)=\frac{1}{4} \times |x-8|+6\\\\\rightarrow k(0)=\frac{1}{4} \times |0-8|+6\\\\\rightarrow k(0)= 2+6\\\\=8[/tex]
Length of Y intercept =8 unit
⇒ h(x),k(x) and m(x) has y intercept greater than y-intercept of the function g(x) = |x + 3| + 4.