Respuesta :

gmany

Answer:

[tex]\large\boxed{S.A.=100\pi\ cm^3\approx314\pi\ cm^2}[/tex]

Step-by-step explanation:

The formula of a volume of a sphere:

[tex]V=\dfrac{4}{3}\pi R^3[/tex]

R - radius

We have

[tex]V=\dfrac{500}{3}\pi\ cm^3[/tex]

Substitute and solve for R:

[tex]\dfrac{500}{3}\pi=\dfrac{4}{3}\pi R^3[/tex]        divide both sides by π

[tex]\dfrac{500}{3}=\dfrac{4}{3}R^3[/tex]          multiply both sides by 3

[tex]500=4R^3[/tex]                divide both sides by 4

[tex]125=R^3\to R=\sqrt[3]{125}\\\\R=5\ cm[/tex]

The formula of a Surface Area os a sphere:

[tex]S.A.=4\pi R^2[/tex]

Substitute:

[tex]S.A.=4\pi(5^2)=4\pi(25)=100\pi\ cm^2[/tex]

[tex]\pi\apprx3.14\to S.A.\approx(100)(3.14)=314\ cm^2[/tex]